
Muistutus aikatauluista

• (Nämä eivät välttämättä koske avoimen yo:n opiskelijoita Erkki Kailan 

rinnakkaisella kurssilla)

• Luento 1: kotitehtävät sulkeutuvat 20.9 12:00, ennen tutoriaalia

• Tutoriaali 1 sulkeutuu 21.9 14:00

• Luento 2: kotitehtävät sulkeutuvat 22.9 14:00

164



Luentopalautteita

• Liikaa asiaa, liikaa opittavaa, en ymmärrä mitään!

• Sama asia käsitellään onneksi aina kahdesti: kerran luennoilla, ja toisen kerran 

tutoriaaleissa

• Tekemällä asiat tulevat paremmin haltuun

• Lisäksi: Tutoriaalitehtävät yleensä pohjustavat kotitehtäviä!

• Yhdessä tehtävässä oli jotain ENDIF, ELSE, hommeleita ja kummallinen 

hymiö := ?

• Pahoittelen! Olivat jääneet viime vuodesta

• Jos näette näitä vielä, niin ilmoitelkaa.

• Tehtävä on nyt korjattu

• Pythonissa ei tarvita ENDIF –sanoja!

165



Luentopalautteesta

• Superesimerkki:

• Sijoitetaan ensin x:n arvoksi 3

• Aloitetaan 2. rivin suorittaminen sulkeista:

• x == 3 on tosi, x:n arvo todellakin on 3, siis sulkulausekkeen 

arvo on True

• Nyt suoritetaan vielä välivaihe y = True

• y:n arvoksi sijoitetaan True, y on siis totuusarvoinen muuttuja, ja x 

oli kokonaislukuarvoinen!

• Nyt y:tä voidaan käyttää esim. if-lauseen ehtona:

x = 3

y = (x == 3)

if y:

print ”x on kolme”



Muuttujien nimeäminen (Pythonissa)

• Muuttujien syntaktisesti oikeat nimet riippuvat ohjelmointikielestä

• Pythonissa nimen:

• Tulee alkaa kirjaimella (a-z) tai alaviivalla _

• Saa sisältää kirjaimia, numeroita tai alaviivoja _

• Pienet ja isot kirjaimet erotellaan

• Esim suurinarvo on eri muuttuja kuin suurinArvo

• Käytäntönä on aloittaa muuttujien nimet pienellä kirjaimella

• Seuraavat sanat kirjoitetaan isolla samassa nimessä:

• muuttujaJonkaNimiOnTodellaPitka

• Seuraavilla kursseilla samat käytännöt

167



Muuttujien nimeäminen 2

• Koska nimet voivat olla monta merkkiä, muuttujat:

x = 1

y = 2

xy  = 1

x3 = 3

• ovat kaikki eri muuttujia. 

• Yhden muuttujan nimi on siis tässä ”x3”

• Toisaalta voidaan kirjoittaa:

xy = x*3*y

• jolloin muuttujaan xy sijoitetaan tulo x*3*y

168



Toisto ja modulaarisuus



Päivän sisältö

• Ohjausrakenne: toisto

• Definiitti toisto

• Indefiniitti toisto

• Modulaarisuus



Toisto



Toisto?

• Mihin tarvitaan toistoa?

print ”2 * 1 = 2”

print ”2 * 2 = 4”

print ”2 * 3 = 6”

print ”2 * 4 = 8”

print ”2 * 5 = 10”
.
.
.



Toisto

• Peräkkäisyys ja valinta eivät riitä algoritmeissa

tarvittavan yleisyyden saavuttamiseksi

• Riittävä yleisyys saavutetaan toiston (repetition) eli iteraation avulla

• Toistoa kutsutaan myös silmukaksi (loop) tai toistorakenteeksi



Toistorakenteet

• Definiitti toisto

• Toistokertojen määrä tunnetaan etukäteen

• Toistokertojen määrä ei voi muuttua toistorakenteen suorituksen aikana

• Joskus lyhennysmerkintä: korvaa “kopioi-liitä –menetelmän”

• Indefiniitti toisto

• Dynaaminen toistorakenne, jossa toistokertojen määrä määräytyy toiston aikana

• Voi määräytyä toistoehdon avulla niin, ettei määrää tiedetä ennen toiston suorituksen

aloittamista

• Lisää aidosti kielen ilmaisuvoimaisuutta

• Huolehdittava siitä, että toisto päättyy joskus!



Definiitti toisto (“for”)

Definiitti toisto on muotoa

for x in lista:

toiminto

• Suoritetaan toiminto kerran kutakin listan L

alkiota kohden

• Voidaan viitata vuorossa olevaan listan

alkioon

– Toiminto voi siis kohdistua eri objektiin eri

toistokerroilla



Mikä “lista”? Esittelyssä: range

• Usein käydään läpi lukuja joltain väliltä

• Tähän voidaan käyttää range-funktiota

• Funktiot käsitellään tarkemmin ensi viikolla

• Esimerkiksi

for i in range(N):

toiminto

Tässä toiminto suoritetaan N kertaa siten, että

• Ensimmäisellä toistokerralla i:n arvo on 0, toisella kerralla 1, 

• Viimeisellä N-1, ei siis N!



Mikä “lista”? Esittelyssä: range

• Voidaan myös aloittaa jostain tietystä luvusta ja lopettaa toiseen

lukuun

for i in range(M, N):

toiminto

• Tässä toiminto suoritetaan aloittaen arvosta M ja lopettaen N-

1:een

• Esim. luvut 1,2,3,…,8,9,10

range(1,11)



Mikä “lista”? Esittelyssä: range

• Jos alku- ja loppuarvot ovat samat, silmukkaa ei suoriteta

ollenkaan:

for i in range(5,5):

print “tätä ei suoriteta”



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

• 1. toisto, i = 1: sijoitetaan summaan arvo 0 + 1

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

• 1. toisto, i = 1: sijoitetaan summaan arvo 0 + 1

• 2. toisto, i = 2: sijoitetaan summaan arvo 1 + 2

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

• 1. toisto, i = 1: sijoitetaan summaan arvo 0 + 1

• 2. toisto, i = 2: sijoitetaan summaan arvo 1 + 2

• 3. toisto, i = 3: sijoitetaan summaan arvo 3 + 3

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

• 1. toisto, i = 1: sijoitetaan summaan arvo 0 + 1

• 2. toisto, i = 2: sijoitetaan summaan arvo 1 + 2

• 3. toisto, i = 3: sijoitetaan summaan arvo 3 + 3

• 4. toisto, i = 4: sijoitetaan summaan arvo 6 + 4

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

summa = 0

for i in range(1,6):

summa = summa + i

• 1. toisto, i = 1: sijoitetaan summaan arvo 0 + 1

• 2. toisto, i = 2: sijoitetaan summaan arvo 1 + 2

• 3. toisto, i = 3: sijoitetaan summaan arvo 3 + 3

• 4. toisto, i = 4: sijoitetaan summaan arvo 6 + 4

• 5. toisto, i = 5: sijoitetaan summaan arvo 10 + 5

• Silmukka suoritetaan 5 kertaa i:n arvoilla 1, 2, 3, 4 ja 5

Muuttuja i saa siis 

arvot 1, 2, 3, 4, 5 ja 

suorittaa toiminnot 

kullakin i:n arvolla



Askeltava toisto - esimerkki

for i in range(1,11):

print ”2 *”, i, ” = ”, (i * 2)

Tulostaa:

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6
.
.

2 * 10 = 20



Askeltava definiitti toisto

• Jos askel poikkeaa yhdestä, se voidaan antaa rangelle kolmanneksi

parametriksi

• range(alkuarvo, loppuarvo, askel)

• Esimerkiksi

for i in range(1,10, 2):

toiminto

Suorittaa toiminnon i:n arvoille 1,3,5,7,9



Edellinen esimerkki toisella tavalla

for i in range(2, 21, 2):

print ”2 *”, (i/2), ”=”, i

Tulostaa:

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6
.
.

2 * 10 = 20

Viime esimerkissä: 

for i in range(1,11):

print ”2 * ”, i, ”=”, (i * 2)



Askeltava definiitti toisto

• Askel voi olla myös negatiivinen

• Esimerkiksi

for i in range(10,0,-1):

print i

• Nyt i saa arvot 10, 9, 8, …, 1

• Loppuarvo 0 jää jälleen pois



Sisäkkäiset toistolauseet

• Kuten ehtolauseita, myös toistolauseet voivat sisältää toisia toistolauseita

• Esimerkiksi:

for i in range(5):

for j in range(5):

print i, j

Tulostaa 0 0      0 1     0 2       0 3        0 4      1 0      1 1      1 2       1 3       1 4    ….

(eri riveille)

• Sisemmän silmukan laskuri (eli j yllä) kannattaa nimetä eri tavalla kuin 

ulomman



Sisäkkäiset toistolauseet

• Sisempi toistolause voi käyttää myös ulomman laskurimuuttujaa

• Esimerkiksi:

for i in range(3):

for j in range(i):        

print "sisempi silmukka"



Indefiniitti toisto (toistojen lukumäärää ei 

tiedetä)

while ehto:

toiminto

• Silmukan toiminnot suoritetaan niin kauan kuin ehto on 

tosi

• Jos ehto heti epätosi, ei suoriteta kertaakaan



Indefiniitti toisto (toistojen lukumäärää ei 

tiedetä)

while ehto:

toiminto

• Toiminnon suorituksen jälkeen ehto

testataan jälleen

• Jos ehto edelleen voimassa, suoritetaan 

toiminnot uudestaan

• Toisto loppuu, kun ehto on epätosi



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 

5; i 6



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 

5; i 6

• i = 6 < 10 – suoritetaan silmukka; summa 

11; i 7



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 

5; i 6

• i = 6 < 10 – suoritetaan silmukka; summa 

11; i 7

• i = 7 < 10 – suoritetaan silmukka; summa 

18; i 8



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 

5; i 6

• i = 6 < 10 – suoritetaan silmukka; summa 

11; i 7

• i = 7 < 10 – suoritetaan silmukka; summa 

18; i 8

• i = 8 < 10 – suoritetaan silmukka; summa 

26; i 9



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 

5; i 6

• i = 6 < 10 – suoritetaan silmukka; summa 

11; i 7

• i = 7 < 10 – suoritetaan silmukka; summa 

18; i 8

• i = 8 < 10 – suoritetaan silmukka; summa 

26; i 9

• i = 9 < 10 – suoritetaan silmukka; summa 

34; i 10



While-toisto - esimerkki

i = 5

summa = 0

while i < 10:

summa = summa + i

i = i + 1

• i = 5 < 10 – suoritetaan silmukka; summa 5; i 6

• i = 6 < 10 – suoritetaan silmukka; summa 11; i 7

• i = 7 < 10 – suoritetaan silmukka; summa 18; i 8

• i = 8 < 10 – suoritetaan silmukka; summa 26; i 9

• i = 9 < 10 – suoritetaan silmukka; summa 34; i 10

• i = 10 ei ole < 10, lopetataan



While-toisto – ehdon muotoilu

• Mikä tässä on vikana?

i = 5

summa = 0

while i < 10:

summa = summa + i



While-toisto– ehdon muotoilu

• Toiston rungossa on tärkeä tehdä operaatioita jotka lopulta muuttavat ehdon 

epätodeksi

• Ehdon muotoon kiinnitettävä huomiota

• Yleinen virhe: ehto joka pysyy totena

• ViLLEssä tällaiset virheet ilmenevät aikakatkaisuvirheenä (Operation timed 

out)

i = 5

summa = 0

while i < 10:

summa = summa + i



While-toisto – ehdon muotoilu

• Esimerkki:

i = 1

summa = 0

while i != 10:

summa = summa + i

i = i + 2

• Nyt i käy läpi parittomia arvoja 1, 3, 5, 7, 9, 11

• Ehto ei siis ikinä tule epätodeksi

• Korjaus: ehto muotoon i < 10



Indefiniitti vs definiitti toisto

• Definiitti toisto voidaan aina korvata indefiniitillä toistolla

• Päinvastoin ei päde!

• Indefiniitti toisto riittäisi kaikkien toistojen esittämiseen

• Selvyyden vuoksi valitaan ongelmaan parhaiten sopiva toistomuoto

• Jos tarvitaan silmukkamuuttujaa, definiitti yleensä soveltuu paremmin



Indefiniitti vs definiitti toisto

• Definiitti toiston korvaus indefiniitillä toistolla esimerkki:

Definiitti toisto Indefiniitti toisto

summa = 0

for i in range(1,6):

summa = summa + i

summa = 0

i = 1

while i < 6:

summa = summa + i

i = i + 1



Yhteenveto kontrollirakenteista

Ohjausrakenne Selitys

• Iteratiivisten ohjelmien perusrakenne

• Koodirivit suoritetaan ylhäältä alas algoritmiin kirjoitetussa 

järjestyksessä

• Tästä järjestyksestä voidaan poiketa muilla rakenteilla

• Kontrollirakenne jolla valitaan kahden toiminnon välillä

• Ehdon ollessa tosi suoritetaan if-lohkon koodi

• Ehdon ollessa epätosi suoritetaan else-lohkon koodi

• Mahdollistaa toiminnon suorittamisen monta kertaa

• Eri tyyppejä sen mukaan tiedetäänkö toistojen määrä

• Rakenteet for, while



Modulaarisuus



Moduuli

• Moduuli on itsenäinen algoritmikomponentti

• Moduuli eli metodi (method) 

eli rutiini (routine)

eli alirutiini (subroutine)

eli aliohjelma (subprogram)

• Moduuli ratkaisee yhden osaongelman

• Moduuli voidaan suunnitella käyttöyhteydestä riippumattomasti

• Moduulia voidaan käyttää missä tahansa algoritmissa jossa esiintyy ko. 

Osaongelma



Moduulin kutsu ja modulaarisuus

• Moduulia käyttävän algoritmin sanotaan kutsuvan moduulia

• Useista moduuleista koostuvaa algoritmia sanotaan modulaariseksi

• Modulaarisessa algoritmissa jokainen ei-triviaali moduuli koostuu 

pienemmistä moduuleista



Moduulin määrittely

Yksinkertaisen moduulin määrittely on 

muotoa:

def moduulinNimi():

moduulin runko

• moduulinNimi on moduulille annettu nimi

– Nimen tulee kuvata moduulin tehtävää

– Käytetään moduulia kutsuttaessa

• Moduulin runko on tehtävän toteuttavat 

toiminnot



Moduulin kutsu

def moduulinNimi():

moduulin runko

• Moduulia kutsutaan sen nimeä käyttäen

• Esimerkiksi yo. moduulin kutsu:

moduulinNimi()

• Monimutkaisempia määrittelyjä ja kutsuja 

ensi viikolla



Moduulin käyttö - esimerkki

• Tehtävä: kuljeta auto maaliin teitä pitkin

• Käytössä moduulit turnRight(), turnLeft(), moveForward(), moveBackward()

226



Moduulin käyttö - esimerkki

• Käytössä moduulit turnRight(), turnLeft(), moveForward(), moveBackward()

• Naiivi tapa:

turnRight()

moveForward()

moveForward()

turnRight()

moveForward()

moveForward()

turnRight()

moveForward()

moveForward()

227



Moduulin käyttö - esimerkki

• Käytössä moduulit turnRight(), turnLeft(), moveForward(), moveBackward()

• Naiivi tapa:

turnRight()

moveForward()

moveForward()

turnRight()

moveForward()

moveForward()

turnRight()

moveForward()

moveForward()

228

Moduuliin:

def oikeaJaEteen():

turnRight()

moveForward()

moveForward()

oikeaJaEteen()

oikeaJaEteen()

oikeaJaEteen()



Moduulin käyttö - esimerkki

• Miten algoritmi voidaan korjata kuvan uuteen tilanteeseen?

229

# Ei toimi!

def oikeaJaEteen():

turnRight()

moveForward()

moveForward()

oikeaJaEteen()

oikeaJaEteen()

oikeaJaEteen()



Moduulin käyttö - esimerkki

• V: korjataan vain moduulia

230

# Toimii!

def oikeaJaEteen():

turnRight()

moveForward()

moveForward()

moveForward()

oikeaJaEteen()

oikeaJaEteen()

oikeaJaEteen()



Moduulin käyttö - esimerkki

• V: Vähennetään vielä turhaa ”copy-pastea” käyttämällä silmukoita

231

# Toimii!

def oikeaJaEteen():

turnRight()

for i in range(3):

moveForward()

for i in range(3):

oikeaJaEteen()


